3 načina rješavanja kubičnih jednadžbi

Sadržaj:

3 načina rješavanja kubičnih jednadžbi
3 načina rješavanja kubičnih jednadžbi

Video: 3 načina rješavanja kubičnih jednadžbi

Video: 3 načina rješavanja kubičnih jednadžbi
Video: Sređivanje algebarskih izraza - 8. razred - 1. dio 2024, Studeni
Anonim

Kad prvi put pronađete kubnu jednadžbu (koja ima oblik ax 3 + bx 2 + cx + d = 0), možda mislite da će se problem teško riješiti. Ali znajte da rješavanje kubičnih jednadžbi zapravo postoji stoljećima! Ovo rješenje, koje su otkrili talijanski matematičari Niccolò Tartaglia i Gerolamo Cardano 1500 -ih godina, jedna je od prvih formula poznatih u staroj Grčkoj i Rimu. Rješavanje kubičnih jednadžbi može biti malo teško, ali uz pravi pristup (i dovoljno znanja) mogu se riješiti čak i najteže kubične jednadžbe.

Korak

Metoda 1 od 3: Rješavanje pomoću kvadratnih jednadžbi

Riješite kubičnu jednadžbu Korak 1
Riješite kubičnu jednadžbu Korak 1

Korak 1. Provjerite ima li vaša kubična jednadžba konstantu

Kao što je gore navedeno, oblik kubne jednadžbe je ax 3 + bx 2 + cx + d = 0. b, c, a vrijednost d može biti 0 bez utjecaja na oblik ove kubične jednadžbe; to u osnovi znači da kubna jednadžba ne mora uvijek uključivati vrijednost bx 2, cx, ili d biti kubna jednadžba. Da biste počeli koristiti ovaj prilično jednostavan način rješavanja kubnih jednadžbi, provjerite ima li vaša kubna jednadžba konstantu (ili vrijednost d). Ako vaša jednadžba nema konstantu ili vrijednost za d, tada pomoću kvadratne jednadžbe možete pronaći odgovor na kubnu jednadžbu nakon nekoliko koraka.

S druge strane, ako vaša jednadžba ima konstantnu vrijednost, trebat će vam drugo rješenje. Za ostale pristupe pogledajte korake u nastavku

Riješite kubičnu jednadžbu Korak 2
Riješite kubičnu jednadžbu Korak 2

Korak 2. Uzmite x vrijednost iz kubične jednadžbe

Budući da vaša jednadžba nema konstantnu vrijednost, sve komponente u njoj imaju varijablu x. To znači da se ova vrijednost x može uzeti u obzir iz jednadžbe kako bi se pojednostavila. Učinite ovaj korak i prepišite svoju kubičnu jednadžbu u oblik x (ax 2 + bx + c).

Na primjer, recimo da je izvorna kubična jednadžba 3 x 3 + -2 x 2 + 14 x = 0. Faktoriranjem jedne varijable x iz ove jednadžbe dobivamo jednadžbu x (3 x 2 + -2 x + 14) = 0.

Riješite kubičnu jednadžbu Korak 3
Riješite kubičnu jednadžbu Korak 3

Korak 3. Pomoću kvadratnih jednadžbi riješite jednadžbe u zagradama

Možda ćete primijetiti da su neke od vaših novih jednadžbi, zatvorenih u zagradama, u obliku kvadratne jednadžbe (ax 2 + bx + c). To znači da možemo pronaći vrijednost koja je potrebna da ova jednadžba bude jednaka nuli uključivanjem a, b i c u formulu kvadratne jednadžbe ({- b +/- √ (b 2- 4 ac)}/2 a). Izvedite ove izračune da biste pronašli dva odgovora na svoju kubičnu jednadžbu.

  • U našem primjeru, uključite vrijednosti a, b i c (3, -2 i 14, respektivno) u kvadratnu jednadžbu na sljedeći način:

    {- b +/- √ (b 2- 4 ac)}/2 a

    {-(-2) +/-√ ((-2)2- 4(3)(14))}/2(3)
    {2 +/-√ (4 - (12)(14))}/6
    {2 +/-√ (4 - (168)}/6
    {2 +/-√ (-164)}/6
  • Odgovor 1:

    {2 + √(-164)}/6
    {2 + 12,8 i}/6
  • Odgovor 2:

    {2 - 12,8 i}/6
Riješite kubičnu jednadžbu Korak 4
Riješite kubičnu jednadžbu Korak 4

Korak 4. Koristite nule i svoj odgovor na kvadratnu jednadžbu kao odgovor na svoju kubičnu jednadžbu

Kvadratne jednadžbe imat će dva odgovora, dok kubne jednadžbe imaju tri odgovora. Već znate dva odgovora od tri; koje dobivate iz "kvadratnog" dijela jednadžbe u zagradama. Ako se vaša kubična jednadžba može riješiti ovakvom "faktorizacijom", vaš treći odgovor je gotovo uvijek 0. Sef! Upravo ste riješili kubnu jednadžbu.

Razlog zbog kojeg ova metoda funkcionira je temeljna činjenica da je "bilo koji broj pomnožen s nulom jednak nuli". Kada svoju jednadžbu unesete u oblik x (ax 2 + bx + c) = 0, u osnovi ga samo podijelite na dva "dijela"; jedan dio je x varijabla na lijevoj strani, a drugi dio je kvadratna jednadžba u zagradama. Ako je jedan od ova dva dijela nula, tada će i cijela jednadžba biti nula. Dakle, dva odgovora na kvadratnu jednadžbu u zagradama, koji bi je učinili nulom, jesu odgovori na kubnu jednadžbu, kao i sam 0 - što bi dio s lijeve strane također učinilo nulom.

Metoda 2 od 3: Pronalaženje cjelobrojnih odgovora pomoću popisa čimbenika

Riješite kubičnu jednadžbu Korak 5
Riješite kubičnu jednadžbu Korak 5

Korak 1. Provjerite ima li vaša kubična jednadžba konstantnu vrijednost

Iako su gore opisane metode prilično jednostavne za korištenje jer ne morate naučiti novu tehniku izračuna kako biste ih koristili, neće vam uvijek pomoći u rješavanju kubnih jednadžbi. Ako je vaša kubična jednadžba oblika ax 3 + bx 2 + cx + d = 0, gdje vrijednost d nije jednaka nuli, gornja metoda "faktorizacije" ne radi, pa ćete za to morati koristiti jednu od metoda u ovom odjeljku.

Na primjer, recimo da imamo jednadžbu 2 x 3 + 9 x 2 + 13 x = -6. U ovom slučaju, da bismo dobili nulu s desne strane jednadžbe, moramo dodati 6 na obje strane. Nakon toga dobit ćemo novu jednadžbu 2 x 3 + 9 x 2 + 13 x + 6 = 0, s vrijednošću d = 6, pa ne možemo koristiti metodu „faktorizacije“kao u prethodnoj metodi.

Riješite kubičnu jednadžbu Korak 6
Riješite kubičnu jednadžbu Korak 6

Korak 2. Pronađite čimbenike a i d

Da biste riješili svoju kubičnu jednadžbu, počnite tako što ćete pronaći faktor a (koeficijent x 3) i d (konstantna vrijednost na kraju jednadžbe). Upamtite, čimbenici su brojevi koji se međusobno mogu pomnožiti kako bi se dobio određeni broj. Na primjer, budući da možete dobiti 6 množenjem 6 × 1 i 2 × 3, 1, 2, 3 i 6 su faktori 6.

  • U primjeru problema koji koristimo, a = 2 i d = 6. Faktor 2 je 1 i 2. Dok je faktor 6 1, 2, 3 i 6.

    Riješite kubičnu jednadžbu Korak 7
    Riješite kubičnu jednadžbu Korak 7

    Korak 3. Podijelite faktor a s faktorom d

    Zatim navedite vrijednosti koje dobivate dijeljenjem svakog faktora a sa svakim faktorom d. Ovaj izračun obično rezultira mnogim razlomačkim vrijednostima i nekoliko cijelih brojeva. Cijela vrijednost za rješavanje vaše kubne jednadžbe jedan je od cijelih brojeva dobivenih iz izračuna.

    U našoj jednadžbi podijelite vrijednost faktora a (1, 2) s faktorom d (1, 2, 3, 6) i dobijte sljedeće rezultate: 1, 1/2, 1/3, 1/6, 2, i 2/3. Zatim dodajte negativne vrijednosti na popis i dobit ćemo: 1, -1, 1/2, -1/2, 1/3, -1/3, 1/6, -1/6, 2, -2, 2/3 i -2/3. Odgovor na kubnu jednadžbu - koja je cijeli broj, nalazi se na popisu.

    Riješite kubičnu jednadžbu Korak 8
    Riješite kubičnu jednadžbu Korak 8

    Korak 4. Pomoću sintetičke podjele ručno provjerite svoje odgovore

    Nakon što napravite popis vrijednosti poput gornjeg, možete potražiti cjelobrojne vrijednosti koje su odgovori na vašu kubnu jednadžbu ručnim unosom svakog cijelog broja i pronaći koja vrijednost vraća nulu. Međutim, ako ne želite trošiti vrijeme na to, postoji način da to učinite brže, naime pomoću izračuna koji se naziva sintetička podjela. U osnovi biste cijelu vrijednost podijelili s izvornim koeficijentima a, b, c i d u svojoj kubičnoj jednadžbi. Ako je ostatak nula, tada je ta vrijednost jedan od odgovora na vašu kubičnu jednadžbu.

    • Sintetička podjela složena je tema - za više informacija pogledajte donju vezu. Evo primjera kako pronaći sintetičkom podjelom jedan od odgovora na vašu kubičnu jednadžbu:

      -1 | 2 9 13 6
      _| -2-7-6
      _| 2 7 6 0
      Budući da konačni rezultat dobivamo 0, znamo da je jedan od cjelobrojnih odgovora naše kubične jednadžbe jednak - 1.

    Metoda 3 od 3: Korištenje diskriminatornog pristupa

    Riješite kubičnu jednadžbu Korak 9
    Riješite kubičnu jednadžbu Korak 9

    Korak 1. Zapišite jednadžbe a, b, c i d

    Da bismo na ovaj način pronašli odgovor na kubnu jednadžbu, napravit ćemo mnogo izračuna s koeficijentima u našoj jednadžbi. Zbog toga je dobra ideja zabilježiti vrijednosti a, b, c i d prije nego što zaboravite bilo koju od vrijednosti.

    Na primjer, za jednadžbu x 3 - 3 x 2 + 3 x -1, zapišite to kao a = 1, b = -3, c = 3 i d = -1. Ne zaboravite da kada varijabla x nema koeficijent, njezina je vrijednost 1.

    Riješite kubičnu jednadžbu Korak 10
    Riješite kubičnu jednadžbu Korak 10

    Korak 2. Izračunajte 0 = b 2 - 3 klima uređaja.

    Diskriminacijski pristup pronalaženju odgovora na kubične jednadžbe zahtijeva složene izračune, ali ako pažljivo slijedite korake, može biti vrlo koristan za rješavanje kubičnih jednadžbi koje je teško riješiti na druge načine. Za početak, pronađite vrijednost 0, što je prva značajna vrijednost od nekoliko koje su nam potrebne, uključivanjem odgovarajuće vrijednosti u formulu b 2 - 3 klima uređaja.

    • U primjeru koji koristimo riješit ćemo to na sljedeći način:

      b 2 - 3 ak
      (-3)2 - 3(1)(3)
      9 - 3(1)(3)
      9 - 9 = 0 = 0
    Riješite kubičnu jednadžbu Korak 11
    Riješite kubičnu jednadžbu Korak 11

    Korak 3. Izračunajte 1 = 2 b 3 - 9 abc + 27 a 2 d.

    Sljedeća značajna vrijednost koja nam je potrebna, 1, zahtijeva duži izračun, ali se može pronaći na isti način kao 0. Uključite odgovarajuću vrijednost u formulu 2 b 3 - 9 abc + 27 a 2 d da biste dobili vrijednost 1.

    • U ovom primjeru to rješavamo na sljedeći način:

      2(-3)3 - 9(1)(-3)(3) + 27(1)2(-1)
      2(-27) - 9(-9) + 27(-1)
      -54 + 81 - 27
      81 - 81 = 0 = 1
    Riješite kubičnu jednadžbu Korak 12
    Riješite kubičnu jednadžbu Korak 12

    Korak 4. Izračunajte = 12 - 4Δ03) -27 a 2.

    Zatim izračunavamo "diskriminatornu" vrijednost vrijednosti 0 i 1. Diskriminator je broj koji vam daje podatke o korijenu polinoma (možda ste nesvjesno zapamtili kvadratnu diskriminacijsku formulu: b 2 - 4 klima uređaja). U slučaju kubične jednadžbe, ako je vrijednost diskriminante pozitivna, tada jednadžba ima tri realna broja odgovora. Ako je diskriminacijska vrijednost jednaka nuli, tada jednadžba ima jedan ili dva realna broja odgovora, a neki od odgovora imaju istu vrijednost. Ako je vrijednost negativna, tada jednadžba ima samo jedan odgovor na pravi broj, jer će grafikon jednadžbe uvijek barem jednom presjeći os x.)

    • U ovom primjeru, budući da je 0 i 1 = 0, vrlo je lako pronaći vrijednost. Moramo ga izračunati na sljedeći način:

      12 - 4Δ03) -27 a 2
      (0)2 - 4(0)3) ÷ -27(1)2
      0 - 0 ÷ 27
      0 =, pa naša jednadžba ima 1 ili 2 odgovora.
    Riješite kubičnu jednadžbu Korak 13
    Riješite kubičnu jednadžbu Korak 13

    Korak 5. Izračunajte C = 3(√ ((Δ12 - 4Δ03) + 1)/ 2).

    Posljednja vrijednost koju nam je važno dobiti je vrijednost C. Ova nam vrijednost omogućuje da dobijemo sva tri korijena naše kubične jednadžbe. Riješite kao i obično, dodajući vrijednosti 1 i 0 u formulu.

    • U ovom primjeru vrijednost C dobit ćemo:

      3(√ ((Δ12 - 4Δ03) + 1)/ 2)
      3√(√((02 - 4(0)3) + (0))/ 2)
      3√(√((0 - 0) + (0))/ 2)
      0 = C
    Riješite kubičnu jednadžbu Korak 14
    Riješite kubičnu jednadžbu Korak 14

    Korak 6. Izračunajte tri korijena jednadžbe sa svojom varijablom

    Korijen (odgovor) vaše kubične jednadžbe određen je formulom (b + u C + (Δ0/u C)) / 3 a, gdje je u = (-1 + (-3))/2 i n jednako 1, 2 ili 3. Uključite svoje vrijednosti u formulu da biste ih riješili-možda ćete morati napraviti dosta izračuna, ali trebali biste dobiti sva tri odgovora na kubičnu jednadžbu!

    • U ovom primjeru mogli bismo to riješiti provjerom odgovora kada je n jednako 1, 2 i 3. Odgovor koji dobivamo iz ovog izračuna je mogući odgovor na našu kubičnu jednadžbu - bilo koju vrijednost koju uključimo u kubičnu jednadžbu i ona daje isti rezultat. s 0 je točan odgovor. Na primjer, ako dobijemo odgovor jednak 1 ako smo u jednom od naših proračunskih pokusa uključili vrijednost 1 u jednadžbu x 3 - 3 x 2 + 3 x - 1 daje konačni rezultat jednak 0. Dakle

      Korak 1. jedan je od odgovora na našu kubičnu jednadžbu.

Preporučeni: